qqqqqq
注册 登录
EN | CN
  • 首页
  • 论文提交
  • 论文浏览
  • 论文检索
  • 个人中心
  • 帮助
按提交时间
  • 1
按主题分类
  • 1
按作者
  • 1
  • 1
按机构
  • 1
  • 1
当前资源共 1条
隐藏摘要 点击量 时间 下载量
  • 1. ChinaXiv:201805.00451
    下载全文

    基于统计学特征的android恶意应用检测方法

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2018-05-24 合作期刊: 《计算机应用研究》

    冷波 李建彬

    摘要: 针对Android恶意应用检测中忽略特征统计学意义的问题,提出一种基于统计学特征的Android恶意应用检测方法。该方法提取应用统计学特征作为训练数据集,并采用聚类算法预处理恶意数据集以降低个体差异性对实验结果的影响。另一方面,该方法结合特征和多种机器学习算法(如线性回归、神经网络等)建立了检测模型。该方法提出的两个模型准确率均能达到95%以上,检测时间相比于对比实验也能大幅度降低。实验结果表明,应用的统计学特征能够很好地区分良性和恶意应用,并且通过聚类算法预处理数据能够提高检测精度。

    通过
     点击量 2174  下载量 1013  评论 0
友情链接 : ChinaXiv PubScholar 哲学社会科学预印本
  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募预印本评审专家 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备110402500046号
版权所有© 2016 中国科学院文献情报中心