qqqqqq
注册 登录
EN | CN
  • 首页
  • 论文提交
  • 论文浏览
  • 论文检索
  • 个人中心
  • 帮助
按提交时间
  • 1
  • 2
按主题分类
  • 3
按作者
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
按机构
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
当前资源共 3条
隐藏摘要 点击量 时间 下载量
  • 1. ChinaXiv:202204.00044
    下载全文

    移动边缘计算中基于中继辅助计算方法综述

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2022-04-07 合作期刊: 《计算机应用研究》

    陈澈 郑艺峰 杨敬民 谢玲富 张文杰

    摘要: 为了满足下一代网络在覆盖范围、部署成本以及容量方面的挑战,移动边缘计算(MEC)通常需要借助中继节点的辅助来完成计算密集型和延迟敏感型的任务。首先介绍了基于中继辅助MEC系统的基本架构,之后从任务卸载、资源分配和中继节点选择三方面对基于中继辅助MEC系统最新的研究方法进行归纳总结。更进一步,针对现有方法可能存在的问题与挑战进行了讨论与分析,并提出一些可行的解决方案为后续研究发展提供参考。

    通过
     点击量 2574  下载量 641  评论 0
  • 2. ChinaXiv:201811.00186
    下载全文

    一种基于MapReduce并行化计算的大数据聚类算法

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2018-11-29 合作期刊: 《计算机应用研究》

    张文杰 蒋烈辉

    摘要: 面对大数据规模庞大且计算复杂等问题,基于MapReduce框架采用两阶段渐进式的聚类思想,提出了改进的K-means并行化计算的大数据聚类方法。第一阶段,该算法通过Canopy算法初始化划分聚类中心,从而迅速获取粗精度的聚类中心点;第二阶段,基于MapReduce框架提出了并行化计算方案,使每个数据点围绕其邻近的Canopy中心进行细化的聚类或合并,从而对大数据实现快速、准确地聚类分析。在MapReduce并行框架上进行算法验证,实验结果表明,所提算法能够有效地提升并行计算效率,减少计算时间,并提升大数据的聚类精度。

    通过
     点击量 2183  下载量 1052  评论 0
  • 3. ChinaXiv:201811.00187
    下载全文

    一种基于遗传算法优化的大数据特征选择方法

    分类: 计算机科学 >> 计算机科学的集成理论 提交时间: 2018-11-29 合作期刊: 《计算机应用研究》

    张文杰 蒋烈辉

    摘要: 特征选择是大数据集预处理的重要方法,能够使后续的数据分析与处理更加高效准确。提出了一种基于遗传算法的大数据特征选择算法。该算法首先对各维度的特征进行评估,根据每个特征在同类最近邻和异类最近邻上的差异度调整其权重,基于特征权重引导遗传算法的搜索,以提升算法的搜索能力和获取特征的准确性;然后结合特征权重计算特征的适应度,以适应度作为评价指标,启动遗传算法获取最优的特征子集,并最终实现高效准确的大数据特征选择。通过实验分析发现,该算法能够有效减小分类特征数,并提升特征分类准确率。

    通过
     点击量 2191  下载量 1091  评论 0
友情链接 : ChinaXiv PubScholar 哲学社会科学预印本
  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募预印本评审专家 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备110402500046号
版权所有© 2016 中国科学院文献情报中心